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Introduction
Under suitable conditions of spatial and temporal

synchronization, neuronal currents are accompanied by electric
potentials and magnetic fields that are sufficiently large to be
recorded noninvasively from the surface of the head. Such
recordings are known as electroencephalograms (EEGs) and
magnetoencephalograms (MEGs), respectively. In contrast to
positron emission tomography (PET) and functional magnetic
resonance imaging (fMRI), which measure cerebral vascular
changes secondary to changes in neuronal activity, EEG and MEG
are direct physical measurements of neuronal currents and are
capable of resolving temporal patterns of neural activity in the
millisecond range.1,2,3 However, unlike PET and fMRI, the problem
of estimating current distribution in the brain from surface EEG
and MEG measurements (the so-called electromagnetic inverse
problem) is mathematically ill-posed; that is, it has no unique
solution in the most general, unconstrained case.4,5

To address this difficulty of EEG and MEG, we have developed a
new probabilistic approach to the electromagnetic inverse problem6

based on Bayesian inference (see, e.g., Bernardo and Smith7 and
Gelman, et al.8). Unlike other approaches to this problem, including
other recent applications of Bayesian methods9,10, our approach
does not result in a single “best” solution. Rather, we estimate a
probability distribution of solutions upon which all subsequent
inferences are based. This distribution provides a means of
identifying and estimating the likelihood of current-source features
using surface measurements that explicitly emphasize the multiple
solutions that can account for any set of surface EEG/MEG
measurements.

In addition to emphasizing the inherent probabilistic character of
the electromagnetic inverse problem, Bayesian methods provide a
formal, quantitative means of incorporating additional relevant
information, independent of the EEG/MEG measurements
themselves, into the resulting probability distribution of inverse
solutions. Such information can include constraints derived from
anatomy on the likely location and orientation of current9,11,12,13,
maximum current strength, spatial and temporal smoothness of
current, etc.

Bayesian Inference
Bayesian inference (BI) is a general procedure for constructing a

posterior probability distribution for quantities of interest from the
measurements, given prior probability distributions for all of the
uncertain parameters—both those that relate the quantities of
interest to the measurements and the quantities of interest
themselves. The method is conceptually simple, using basic laws of
probability. This makes its application even to complicated
problems relatively straightforward. The posterior probability
distribution is often too complicated to be calculated analytically,
but can usually be adequately sampled using modern computer
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techniques, even in problems with many parameters. More detailed
discussions of Bayesian inference can be found elsewhere (e.g.,
Gelman, et al.8).

Activity Model
The methods of BI applied to the EEG/MEG inverse problem are

demonstrated within the context of a model for the regions of
activation. This model is intended to be applicable in evoked-
response experiments. There is both theoretical and experimental
evidence that EEG and MEG recorded outside the head arise
primarily from neocortex, in particular from apical dendrites of
pyramidal cells (see, for example, Hämäläinen, et al.1; Allison, et
al.14; and Dale and Sereno15). We therefore construct a model that
assumes a variable number of variable-size cortical regions of
stimulus-correlated activity in which current may be present.
Specifically, an active region is assumed to consist of those locations
which are identified as being part of cortex and are located within a
sphere of some radius, r, centered on some location, w, also in
cortex. There can be any number, n, of these active regions up to
some maximum, nmax, and the radius can have any value up to some
maximum, rmax. The goal is to determine the posterior probability
values for the set of activity parameters, α = {n,w,r}, which govern
the number, location, and extent of active regions.

Examples
While the methods described apply to models for both EEG and

MEG data, the remainder of this research highlight will use MEG
data to illustrate the properties of the approach. Both simulated and
empirical MEG data for a Neuromag-122 whole-head system were
used.16 The physical setup of the actual MEG experiment was used
to determine the location of the subject’s head relative to the sensors
in the simulated data examples. In addition, an anatomical MRI data
set acquired from the subject in the MEG experiment was used to
determine the location of cortex (actually gray matter) using
MRIVIEW (see Fig. 1), a software tool developed in our
laboratory.17 About 50,000 voxels were tagged, and the normal
directions for each of these voxels was then determined by
examining the curvature of the local tagged region.

Fig. 1 Gray matter regions are tagged (in
red) from anatomical MRI data. These tagged
voxels constitute the anatomical model used to
implement the cortical location and orientation
prior information.
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In the first example, a simulated data set was generated using the
three active regions of different sizes shown in Fig. 2. Normally
distributed noise was added to the simulated data at a level typical
of empirical experiments. Our Bayesian inference analysis was
applied to this data, and ten thousand samples of the posterior
probability were generated. A few of these samples are shown in

Fig. 3. All of the samples shown in Fig. 3 are among the 95% most
probable and therefore fit both the data and the prior expectations
quite well. Any of these could have produced the given simulated
MEG data, yet there are clearly vast differences among the samples.
The number of active regions ranges from 3 to 6, the sizes of the
regions vary greatly, and the locations of the active regions vary
across nearly the entire tagged region of the brain (when
considering all samples). This variability is a representation of the
degree of the ambiguity of the inverse problem for these MEG data,
even with the prior information present.

Despite the degree of variability among the samples in Fig. 3,
features common to all are apparent; namely active regions within
the three general areas used to generate the simulated data (see
Fig. 2). Features such as these, common to all or most of the
samples, are associated with a high degree of probability. This

Fig. 2 Maximum intensity projections of the
location and extent of the active regions used
to generate the simulated MEG data from the
first example.

Fig. 3 A few of the samples drawn from the
posterior probability distribution for the
simulated data in the first example. Each
panel shows three views of the maximum
intensity projection of all of the active regions
from a single sample. Any of these samples
could have produced the given MEG data set.
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probability can be quantified because the samples are distributed
according to the posterior probability distribution. The smallest
sets of voxels that contained the center of the active regions in
these three areas across 95% of the samples were identified and are
shown in Fig. 4. While these regions are consistent with the
locations of the active regions used to generate the simulated data,
what is more important is that these regions are consistent with at
least 95% of the likely sets of active regions that could also have
been generated with this data. This is true even when allowing a
variable number of active regions of variable extent. This is a very
important feature of BI which is necessarily missing from any
other analysis method that only considers one possible result, even
if it happens to be the most likely result within a given model.

To learn about the extent and size of each of the active regions
localized in Fig. 4, we generated a histogram of the radius of the
active regions in each of the areas shown in Fig. 4 across the
samples (see Fig. 5). This represents the posterior probability for
the size of active regions, assuming there was an active region in
each of these areas. The radii of the actual regions used to generate
the data were 8, 5, and 3 mm in anterior to posterior order. The
agreement between actual radii and posterior probabilities is
especially remarkable given the variation in the current strengths
of the regions used to generate the data. Such information on
extent can be very useful, is not present in most other current
methods for analyzing MEG data, and is affirmation of the likely
utility of anatomical and physiological prior information.

In our second example, we compared Bayesian analyses of MEG
responses to visual stimuli in the left and right visual fields to
examine the sensitivity of the Bayesian approach in detecting
known features of human visual cortex organization.18 Based on
the crossed anatomical projections of the visual fields to the brain
and on previous lesion, MEG, and fMRI studies in humans (see, for
example, Horton and Hoyt19; Sereno, et al.20; and Aine, et al.21),
initial cortical activation for stimuli in the left and right visual
fields should occur near the calcarine fissure in the occipital region
of the contralateral hemispheres.
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Fig. 4 Three views of the maximum-intensity
projections of the location and extent of the
three regions found to contain centers of
activity at a probability level of at least 95%
in the first example.

Fig. 5 The posterior probability distributions
for the size of the three active regions whose
centers are shown in Fig. 4 in anterior to
posterior order. The true sizes of the regions
used to generate the simulated data were
8 mm (a), 5 mm (b), and 3 mm (c).
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Our Bayesian inference analysis was applied separately to the
data for each visual field stimulus at 110-ms post-stimulus latency,
a latency that should include robust activation of the calcarine
region.21 Regions that contained activity at a probability of 95%
were identified and are shown in Fig. 6. This figure depicts relative
probability of activation within these regions on a color scale in
three orthogonal slices through the calcarine region and a three-
dimensional (3-D) rendering of the occipital region. For the left
visual field stimulus, maximal probability of activation at 110 ms
was located in the right (contralateral) hemisphere, centered on the
calcarine region. This pattern was reversed for the right visual field
stimulus at 110 ms, consistent with the predictions from anatomy
and from the lesion, fMRI, and previous MEG studies cited above.

Two additional features of the results in this second example
should be noted. First, although maximal probability of activation
at 110-ms latency was indeed located in the opposite hemisphere,
there exists sizable probability for activity in the ipsilateral
hemisphere near the mid-line. The extent of the 95% probability
regions shown in Fig. 6 is indicative of both the extent of estimated
activation and the degree of error or uncertainty in that estimate,
even allowing for the possibility of different numbers of active
regions of variable extent. Second, although not shown in detail
here, analyses at other latencies suggest a progressively increasing
number of probable regions of activation in both the ipsilateral and
contralateral hemispheres over the latency region from 110 to
160 ms following stimulus onset. It will be of considerable interest
to explore the time dependence of the Bayesian inference analyses
in relation to evidence for multiple, functionally organized areas of
striate and extra-striate visual cortex and to examine the value of
temporal prior information (not included in the current activation
model) in the form of, for example, temporal covariance constraints.

Fig. 6 Four views of a region found to
contain activity at a 95% probability level in
the second example for both left and right
visual field stimuli at 110-ms latency. The
two-dimensional views show the regions
within the anatomical MRI data using a
temperature-like color scale (bright yellow
represents the highest probability). The 3-D
views show the locations of the regions
relative to other brain structures. These
results indicate that the highest probability of
activity is in the calcarine region of the
hemisphere contralateral to the visual field
stimulated.
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In addition, the Bayesian approach provides a natural means for
incorporating information from other functional imaging
modalities such as PET or fMRI.12,13,22 The latter can be readily
achieved with the Bayesian framework and with this activity model
by assigning prior probabilities to possible locations of active
regions based on results from the other modality or modalities.
Such a Bayesian formulation of multimodality integration would
yield an inherently probabilistic result in which the quantity
estimated would be the probability of activation as a function of
both space and time.
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